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Abstract
Recent work has shown that it is possible to use high resolution dynamical structure factor
S(q, ω) data measured with inelastic x-ray scattering to reconstruct the Green’s function of
water, which describes its dynamical density response to a point charge. Here, we generalize
this approach and describe a strategy for reconstructing hydration behavior near simple charge
distributions with excluded volumes, with the long term goal of engaging hydration processes in
complex molecular systems. We use this Green’s function based imaging of dynamics method
to generate hydration structures and show that they are consistent with those of well-studied
model systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Water-mediated interactions are important for a broad range
of biological and colloidal processes [1–5]. Organization
and dynamics of water molecules near solutes govern these
interactions and affect rates and mechanisms of aqueous
phase chemical reactions. A fundamental understanding of
these phenomena requires knowledge of water structure and
dynamics in bulk and in inhomogeneous systems (i.e., near
solutes) at molecular lengthscales and molecular timescales.

High spatial resolution experimental techniques, such as
x-ray absorption spectroscopy [6, 7] as well as x-ray [8]
and neutron scattering [9, 10] have elucidated water structure
at the level of pair correlation functions in bulk water.
Those data, when supplemented with or interpreted in the
context of classical molecular simulations [11, 12] provides
additional insights into higher order water structure including
triplet correlations and tetrahedrality. X-ray absorption fine
structure spectroscopy and neutron diffraction has also been
extended to study water structure in the hydration shell of

hydrophobic solutes, such as krypton and methanol [13, 14].
In a complementary approach, dynamics of water molecules
have been studied using ultrafast spectroscopy: infrared (IR)
spectroscopy has been used to study the THz-frequency inter-
and intra-molecular motions in liquid water [15, 16]. IR
‘pump–probe’ and vibrational-echo correlation spectroscopy
experiments [17–21] have investigated energy-redistribution
and vibrational excitation lifetimes of the intermolecular
hydrogen bonds in water with femtosecond resolution.
Computer simulations of classical n-point charge models
of water (n = 3, 4, 5), and more recently, quantum
models have played an important role in connecting these
viewpoints. However, such simulations can be complex,
computationally intensive, and specific details of results can
depend on the precise choice of water model used in the
study [22].

Inelastic x-ray scattering (IXS) is a hybrid technique
that combines scattering and spectroscopy. IXS measures
the dynamic structure factor S(q, ω) of condensed systems,
and has been previously employed to investigate collective
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dynamics in liquid water [23, 24], ice [25], glasses [26],
as well as the hydration and ionic environments surrounding
different biopolymers [27–29]. Abbamonte et al showed that
it is possible to extract the Green’s function from measured
S(q, ω) and use it to image electron dynamics in a number of
condensed matter systems [30, 31]. Recently, we reconstructed
the femtosecond dynamics of water at molecular lengthscales
from the Green’s function extracted from a library of milli-
electronvolt (meV) resolution S(q, ω) data [32]. This high
resolution dataset, measured over a data range coextensive with
the present limits of 3rd generation synchrotron x-ray sources,
enables this Green’s function imaging of dynamics (GFID)
approach to track the average oxygen density correlations
in water at ∼26 fs temporal resolution and at ∼0.44 Å
spatial resolution. The extracted Green’s function, also known
as the density–density response function χ(q, ω), gives a
direct measure of water response to an ideal point charge.
The results compare well to extant diffraction experiments,
classical molecular dynamics, and femtosecond spectroscopic
measurements [32]. If these results on point charges can
be generalized to molecular systems with complex charge
distributions and finite-sized excluded volumes, GFID can be a
powerful technique that can engage solvation phenomena that
are otherwise difficult to access experimentally.

In this paper, we show how the technique of reconstructing
dynamics from the Green’s function extracted from inelastic
x-ray scattering data, can be generalized from pure electronic
systems to molecular systems in order to provide a new
data-based perspective to solvation processes. In order to
access femtosecond timescales typical of molecular systems, a
number of developments must be made. The energy resolution
needs to be in the milli-electronvolt range, which is 2–3
orders of magnitude higher than the original demonstration
experiment and subsequent experiments on purely electronic
systems. This resolution is possible at third generation
synchrotron x-ray sources with dedicated IXS beamlines. At
these femtosecond timescales, electron dynamics are coupled
to the phonon modes of the underlying molecular density
fluctuations [33]. We begin by describing how Kramers–
Kronig relations can be used to solve the phase problem
for IXS measurements and how to use the extracted Green’s
function, also known as the density–density response function,
to image the dynamic hydration structure around an idealized
point charge. Although linear response theory can in principle
be used in to extend this to more complex charge distributions,
we show that a direct application of linear response theory
fails to accurately describe the hydration environment around
physical, finite-sized molecular solutes. This is due to excluded
volume effects, which are not in the original conception of
S(q, ω) inversion, but are present in all atomic and molecular
systems. Finally, we describe a generalized implementation
of solute excluded volume. Using a combination of linear
response and excluded volume, we use GFID to generate
hydration structures and show that they are consistent with
those of well-studied molecular systems. This provides us with
a basis to reconstruct hydration dynamics around molecular
systems using the full Green’s function.

2. Green’s function imaging of dynamics

S(q, ω) is a direct measurement of correlations between
density fluctuations in a medium [34]. The fluctuation-
dissipation theorem relates S(q, ω) to the imaginary part of the
linear response function χ(q, ω) that describes the dynamical
propagation of density through the medium in response to an
external perturbation, through

χ ′′(q, ω) = −π[S(q, ω) − S(q,−ω)] (1)

where χ(q, ω) = χ ′(q, ω) + ıχ ′′(q, ω). Since the measured
S(q, ω) can be weak, we use the detailed balance relationship,
S(q,−ω) = e−βωS(q, ω) [34] to relate χ ′′ to S. After
correcting for finite resolution4, each measured spectrum was
divided by the Bose factor n(ω) = (1 − e−h̄ω/kT )−1 to yield
χ ′′(q, ω). For an isotropic system like liquid water, χ and S
are both functions of only the magnitude of the vector q .

The real-space function χ(r, t), the Fourier transform
of χ(q, ω), is the Green’s function (or density–density
response function) that describes the dynamical propagation
of density disturbances through the medium due to a delta-
function perturbation at the origin. However, extracting
χ(r, t) from a measurement is not a direct inversion because
only the imaginary part is measured. The missing real
part of the function χ(q, ω) can be calculated from a
measurement of χ ′′(q, ω) by using Kramers–Kronig (KK)
relations [34, 35, 30], which exploit the causal nature of the
response to an external perturbation. For a general causal
response function, the real part is related to the imaginary part
by:

χ ′(q, ω) = − 1

π

∫ ∞

−∞
χ ′′(q, ω′)P

[
1

ω − ω′

]
dω′, (2)

where P represents the principal part of the contour integral.
One can then Fourier transform the fully known χ(q, ω) to the
real-space density–density response function χ(r, t):

χ(r, t) =
∫ ∞

0
dqq2 sin(qr)

4π2qr

∫ ∞

−∞
dω

2π
[χ ′(q, ω) cos(ωt)

+ χ ′′(q, ω) sin(ωt)]. (3)

Since experimental data are discrete and finite, a number
of modifications to the above procedure are necessary to avoid
artifacts in the reconstructions. KK transformations involve
continuous integrals, whereas measured data is discrete. Linear
interpolation is used to approximate data continuously. Also,

4 S(q, ω) has a sharp quasi-elastic peak (width < 1 meV) centered at
ω = 0. For a measurement of S(q, ω), this feature is resolution-broadened
and resolution tails can potentially lead to density artifacts. The Lorentzian
term of the DHO fit function centered at ω = 0 was subtracted from
each measured spectrum to minimize these artifacts. Although there is
dynamical information in the quasi-elastic peak, the subtracted Lorentzian
term is symmetric and does not contribute to χ(q, ω), which is antisymmetric
by definition (equation (1)). Moreover, because the quasi-elastic line is so
narrow, it has a vanishing contribution to χ(q, ω). As an additional check,
this has been confirmed by explicitly evaluating equation (1) on data that
have limited energy measurements on a symmetric domain (−20–20 meV).
Extrapolation in q was done after the time transform, and the line shape of
χ(q, t) was fit to a series of Gaussian peaks to capture the measured profile
while enforcing the condition that χ(q) → 0 smoothly for large q.
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both KK relations and Fourier transforms require that the
argument functions be defined on an infinite domain. The IXS
data at the endpoints of our measurements in q and in ω are
essentially featureless and at background count levels, showing
only statistical fluctuations. We extrapolated this data to zero at
infinity using an optimized damped-harmonic oscillator (DHO)
model function, a generally accepted lineshape for fitting the
IXS spectra of liquids [23, 24, 27, 29], in order to evaluate
the appropriate transformation without introducing artifacts.
The best-fit DHO model parameters for the measured data
was consistent with those reported in other IXS experiments
on water for the same q-values [23, 36, 37]. Although it is
possible to perform the extrapolation in different ways, the
extrapolated data corresponds to times before our first time step
at 26 fs in the reconstructions, and does not impinge on times
in the regime of interest.

The resolution limits on the inversion are related to the
maximal energy and momentum transfers measured, and the
spatio-temporal range over which phenomena may be observed
with GFID is determined by the measurement resolution.
The sampling density in energy of the measurement is
much smaller than the energy resolution of the instrument
(�E = 1.7 meV), and limits the maximum time window to
2π/�E = 2.8 ps. In reciprocal space, the q-resolution of
the instrument (�q = 0.03 Å

−1
) is finer than the spacing

between measurement points (∼0.15 Å
−1

), defined by the
sampling density. Given the instrumental q-resolution, the
maximum object size that can be engaged by the technique
is 2π/0.03 Å

−1 = 205 Å. We calculate the baseline spatio-
temporal resolution via the Nyquist condition based on the
highest ω and q measured [31], yielding �t = π/80 meV =
26 fs and �r = π/7.2 Å

−1 = 0.52 Å. These limits are
coincident with the present limits in inelastic x-ray scattering
beamlines at 3rd generation synchrotron sources. It is possible,
in the future, to use better instrumentation to improve the
maximum energy transfer and thereby improve the temporal
resolution. However, our measurements [32] show that at
energy transfers of 80 meV and higher, the resulting spectra
is only instrumental background. One possible reason for
this is the nature of water motions itself. Molecular motions
on these faster timescales (10s of femtoseconds) are known
to be inertial rotations about the center-of-mass of the water
molecule [38, 22]. Although x-ray scattering probes can
accurately track the motion of the oxygens in water, they are
not expected to be very sensitive to rotations of the water
molecule about its oxygen-dominated center-of-mass. This
suggests that in the future, an implementation of GFID that
combines x-ray and neutron scattering can be a powerful way
of making atomically resolved femtosecond movies of water.

The real-space density–density propagator χ(r, t) recov-
ered from IXS measurements represents the response of water
to a delta-function perturbation in space and in time at the ori-
gin. For x-rays, the perturbation is an electric field impulse. At
the meV-energy scale, the inelastic scattering is due to atomic
density fluctuations rather than ionized electrons. The lack of
an isotopic shift in the excitation spectrum for D2O relative to
H2O [23, 41] shows that the dynamical structure factor mea-
sured by meV-IXS is dominated by motion of the center-of-
mass of the entire water molecule [37]. S(q, ω) is a measure

of charge-density fluctuations in the bulk system [34]. Simi-
larly, χ(q, ω) is related to the inverse of the dielectric function
ε(q, ω),

1

ε(q, ω)
− 1 = 4πe2

q2
χ(q, ω) = L(q, ω). (4)

The quantity L is also known as the dielectric loss function.
In the limit of linear response, the density response function
is a Green’s function that can be used to image the dynamical
hydration structure around a defined external charge density. In
Fourier space, the linear response relation between the induced
charge density δnind(q, ω) and the external charge density
δnext(q, ω) is

δnind(q, ω) = L(q, ω)δnext(q, ω). (5)

Good reviews of the relationship between the density–density
response function χ(q, ω) and the dielectric function ε(q, ω)

can be found in the following [34, 42].

3. Linear response formalism with excluded volume

In principle, the induced charge density in a polarizable
medium δnind(q, ω) can be related to an external charge den-
sity δnext(q, ω) by the linear response relation, equation (5).
While this is useful for point charge descriptions of exter-
nal charge distributions, it becomes problematic in the case
of physical, finite-sized charge densities representing physi-
cal solutes such as ions and molecules. This problem can be
seen more clearly by ‘smearing’ a point charge into a Gaussian
charge distribution of increasing diameter (figure 2). As the
diameter of the charge distribution is increased, the resultant
hydration structure from a direct application of linear response
is affected in two ways. (1) The hydration structure shifts radi-
ally outward. This can for example be seen in position of the
first hydration shell. (2) The hydration structure itself weakens,
via a decrease in peak height. It can be seen that when the di-
ameter of the charge distribution approaches 3 Å, the hydration
structure disappears almost entirely.

Without excluded volume effects, the disruption of
hydration structure for extended charge distributions can be
understood as a ‘destructive interference’ phenomenon. The
induced charge density is related to the convolution of the real-
space density response function χ(r, t) and the external charge
distribution δnext(r, t). As the external charge distribution
broadens, contributions to the induced charge density from
different parts of δnext(r, t) begin to cancel one another
because χ(r, t) describes both induced positive and negative
density. Physically, the external charge density becomes too
large for water molecules to organize hydration shells around
it, and the granularity described by χ(r, t) becomes washed
out. Equation (5) describes the external charge distribution
is embedded into a continuous dielectric, which induces the
bound charge density in response to the potential generated.

This formalism becomes unphysical for the situation of
the solvation charge response due to a molecular solute in
liquid water. Solutes are defined by their charge distribution
and by an excluding volume that liquid water is forbidden

3
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from penetrating. The physical basis for this is the Pauli
exclusion principle, where overlapping electron wavefunctions
are forbidden. An example of this is the excess electron in
water, which relaxes to its ground state while opening up a
cavity that has a diameter of more than 6 Å when defining the
first hydration shell as the center-of-mass of the nearest water
molecules. To use linear response in any meaningful way, the
excluded volume of the solute charge distribution must be a
factor in the hydration description.

A similar situation to the excluded volume problem
occurs in quantum chemistry when the electronic structure
and excitation energies of dissolved molecules are sought.
Molecular simulations involving a large number of explicit
solvent molecules rapidly become expensive as the size of
the solute molecule increases. Implicit solvent models are
used to describe the hydration environment efficiently. The
aqueous environment is modeled as an infinite dielectric,
sometimes with complicated dynamical or non-local behavior,
but typically with a uniform dielectric constant matching that
of bulk water (εwater ≈ 80). The solute is modeled as a
charge distribution and cavity chosen to reflect the solute’s
morphology. An example cavity is an assembly of spheres,
one centered at each atomic center with the respective radii
matching one that is empirically determined (the van der
Waals radius, for example). The excluded volume is chosen
arbitrarily, as long as there is a physical basis for it. For the
case of GFID, combining the dielectric loss function formalism
in equation (5) with this implementation of excluded volume is
a good place to start for fully describing physical solutes.

We assume that the interior of the cavity is devoid of
solvent, hence no polarizable media (ε = 1). The surrounding
solvent behaves like bulk solvent. A modified dielectric loss
function can be defined accordingly:

Lmod(|r − r′|; ω) =
{

0 r or r′ ∈ Vexc

L(|r − r′|; ω) r and r′ /∈ Vexc,
(6)

where L is related to the measurable quantity χ in equation (4).
This places boundary conditions on the dielectric function ε:

εmod(|r−r′|; ω) =
{

1 r or r′ ∈ Vexc

ε(|r − r′|; ω) r and r′ /∈ Vexc.
(7)

Inside of the solute’s excluded volume, ε has the vacuum
value of 1. For isotropic systems like liquid water, L is a
function of the distance between the points r and r′. In general,
however, it is a two-point function: it propagates the effect of
electrodynamical quantities at a point in space r′ to a point r.
This is easily seen in the real-space equivalent of equation (5):

nind(r; ω) =
∫ ∞

−∞
dr′L(r, r′; ω)next(r′; ω). (8)

However, this ‘charge-in/charge-out’ method of linear re-
sponse is problematic when combined with Lmod. Equation (5)
propagates the effect of the charge density at the point r′ to the
position r. The boundary conditions defined in equation (6)
nullify any induced charge density if the external charge distri-
bution is entirely contained within the excluded volume. Lmod

is zero where next is non-zero, making nind uniformly zero. As
defined, the linear response relation equation (5) and the modi-
fied dielectric loss function Lmod are incompatible because the
localized external charge densities do not contribute to charge
induction in the media. An approach that accounts for the influ-
ence of the external charge distribution over all space is needed.

Previous work on solute–solvent interactions suggest an
alternate approach to move forward [43–46]. The electric
displacement �D(r) is a property of the localized external
charge distribution that spans all space. Unlike the electric
field, the electric displacement is independent of its dielectric
environment. �D(r) from solute induces a polarization at all
points in the solvent:

Pα(q, ω) = −(ε−1
αβ (q, ω)−1)Dβ (q, ω) = −L(q, ω)Dβ(q, ω)

(9)
where ε−1

αβ is the inverse dielectric tensor. ε−1
αβ and Lαβ are the

tensor versions of ε−1 and L found in equation (4) [34]. Lαβ

can be written explicitly in terms of its longitudinal (L(q, ω))
and transverse (L⊥(q, ω)) components [40]:

Lαβ(�q, ω) = L(q, ω)
qαqβ

q2
+L⊥(q, ω)

(
δαβ − qαqβ

q2

)
. (10)

The longitudinal component L(q, ω) is the quantity measur-
able by inelastic scattering experiments. The transverse com-
ponent L⊥(q, ω) contributes in magnetic systems and those in
which total charge reorganization occurs more rapidly (due to
rotational molecular motions, for example) than the longitu-
dinal reorganization alone [40]. The characteristic timescale
for oxygen oscillation in water is ∼200 fs [21, 32], so we are
primarily interested in phenomena in water that occur from
∼100 fs onwards. By comparison, the inertial reorganization
of water molecules occurs on the order of ∼10s of femtosec-
onds. The transverse component can be ignored and the dy-
namical polarization induced in the solvent surrounding a so-
lute molecule can be calculated from the dynamical electric
displacement �D(q, ω) and the Fourier transform of the mod-
ified dielectric loss tensor, Lmod

αβ (q, ω) (with an implicit sum
over β),

Pα(q, ω) = Lmod
αβ (q, ω)Dβ(q, ω). (11)

While the relationship between the electric displacement
and the induced polarization is defined in Fourier space for
simplicity, it is most useful to ultimately calculate these
quantities in real space. Equation (11) is a convolution in real
space:

Pα(r, t) =
∫ t

−∞
dt ′

∫ ∞

−∞
dr′Lmod

αβ (|r − r′|; t − t ′)Dβ(r′; t ′),

(12)
where Lmod

αβ (|r−r′|; t−t ′) is the Fourier transform of the tensor
Lmod

αβ (q, ω) which incorporates the modified density response
function (equation (6)) into the polarization calculation. The
goal of this calculation is to image the hydration structure
surrounding a defined dynamical molecular solute, as indicated
by the oxygen positions, via the induced charge density. The
induced charge density in the solvent can be computed directly
from the real-space polarization,

nind(r, t) = −�∇ · �P(r, t). (13)

4
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From the boundary conditions defined in equation (6),
Pα(r, t) is uniformly zero for r ∈ Vexc. There is no solvent
inside the cavity to mediate an induced charge. For r /∈ Vexc,
Pα(r, t) depends on the displacement field over all space except
from the cavity. Equation (12) can be expressed in terms of the
boundary-free induced polarization P0

α (r; t) and a boundary
enforcing correction δPα(r; t):

P0
α (r; t) =

{
0 r ∈ Vexc

P0
α (r; t) − δPα(r; t) r /∈ Vexc,

(14)

where

P0
α (r; t) =

∫ t

−∞
dt ′

∫ ∞

−∞
dr′Lαβ(|r − r′|; t − t ′)Dβ(r′; t ′),

(15)
and

δPα(r; t) =
∫ t

−∞
dt ′

∫
Vexc

dr′Lαβ(|r − r′|; t − t ′)Dβ(r′; t ′).

(16)
δ �P(r; t) is essentially a linear correction to the boundary-free
case. It removes the non-local contribution to the induced
polarization from the cavity Vexc at all points. The special case
for r ∈ Vexc accounts for the lack of polarizable solvent inside
the cavity. Equation (14) is equivalent to approach defined by
equation (12).

It is important to note that this general approach for
describing the excluded volume is not new. It has been used
to describe model solute–solvent systems in the approximation
of the solvent behaving as a continuous dielectric [43–46]. It
has been shown that this approximation underestimates the
long-time relaxation that is better captured in more accurate
treatments, like Gaussian field models of solvation, where an
inverse tensor of the dielectric loss function is used rather
than a simple subtraction of the cavity contribution [47]. The
tensor inversion approach, which can be implemented within
GFID, becomes computationally expensive when imaging
dynamical solvation structures due to added step of inverting
the two-point susceptibility tensor over all points in space at
each time step. By comparison, equations (14)–(16) can be
calculated using fast Fourier transforms at each time step and
are computationally efficient. Further, the dynamics captured
by our measured response function agree well with other
measurements within the described resolution limitations [32].
A comparison between the Gaussian solvation model and the
cavity subtraction approach can in principle be quantified with
our data. However, the timescales over which a difference
is observed [47] is larger than the longitudinal relaxation
lifetime of water (∼0.7 ps) [17]. In the present dataset, the
extracted response function has largely decayed to noise over
this timescale, so this difference is likely comparable to other
sources of noise in the measurement.

4. Examples

Using the method described in section 3, the hydration
structure around an external charge density with explicit
excluded volume can be determined. In the following static

Figure 1. (a) The measured function χ ′′(q, ω). S(q, ω)
measurements on room-temperature liquid water were made at ESRF
(Grenoble, France) over a q-range of 0.2–7.2 Å

−1
. The detailed

balance condition that relates S(q, ω) to χ ′′(q, ω) was applied to
construct this dataset. See section 2 for complete procedure. This
dataset is comprised of over 9000 individual measurements in the
(q, ω) plane. (b) A ω = 0 slice of the measured response function
χ(q, ω), where ω is scanned for each q-point. This measurement of
χ(q, ω = 0) is consistent with neutron scattering measurements and
simulations [39, 40].

examples, the density response function χ(q) used is shown
in figure 1(b). A discussion of the experimental considerations
for measuring χ(q) can be found elsewhere [32]. It should
be noted that, while the examples discussed here are relevant
to systems of hydrated ions, the implementation of excluded
volume described in section 3 can be extended to larger objects
and to different geometries.

The simplest model of a classical ion is a charge
distribution coincident with a spherical excluded volume.
Much of the difference between ionic species of the same
charge comes from the differences in volume from which
solvent water molecules are prohibited. In fact, in many
classical molecular dynamics models of water, simulated ions
are implemented as a charge contained in a Lennard-Jones
sphere with a diameter that varies by species. Using GFID
and excluded volume, the effect of the charge distribution
and exclusion diameter can be independently quantified and
compared to other measurements.

We first investigate the induced charge density in the
surrounding medium as a function of the radius of the excluded

5
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Figure 2. The induced charge density around a point charge (——)
and around Gaussian charge distributions of increasing widths
σele = 0.7 Å (· · · · · ·) and σele = 1.1 Å (- - - -). As the charge
distribution increases its width, the hydration structure moves out
radially and weakens.

Figure 3. For a fixed external charge distribution (a Gaussian with
width σQ = 0.3 Å), the excluded volume radius rexc is varied from
1.0 to 2.5 Å. The induced charge density δnind(r) is plotted as a
function of the distance from the center of the external charge
distribution. The position of the first minimum (negative induced
charge density) represents the first hydration shell position of
oxygen, as it carries the negative charge density in water. This peak
position can be continuously controlled by the parameter rexc.

volume (figure 3). The position of the induced negative
charge density represents the average oxygen position of
water. In this case, the excluded volume is a sphere of radius

Figure 4. The effect of the diameter of the charge for a fixed
excluded volume (rexc = 2 Å). The external charge distributions are
modeled as Gaussians centered at the origin with widths of
σQ = 0.1 Å (induced charge density shown as a solid line),
σQ = 1.3 Å (dash–dot line), and σQ = 2.5 Å (dotted line). When the
charge is mostly contained within the excluded volume, the induced
charge density is nearly conserved (σQ = 0.1, 1.3 Å). For larger
distributions (σQ = 2.5 Å), where significant fractions of charge
penetrate the surrounding medium, the induced charge density is
weakened. Additionally, the induced features are slightly broadened
compared to the narrower charge distributions.

rexc. It can be seen that the position of the first hydration
shell can be parameterized by the choice of rexc to match
physically determined values for ionic species. The effect of
spatial distribution of charge can amount of charge can be
independently controlled for fixed excluded volume. Figure 4
shows that, for a fixed cavity radius (rexc = 2 Å), the magnitude
and the shape of the induced charge density is affected by
the spatial distribution of charge. In both cases, the induced
negative charge density, which tracks with the average oxygen
density, around the excluded volume decreases in magnitude
as the external charge distribution leaks into the medium: for a
particular position �r , less charge is contained with in the sphere
of radius |�r |. As a result of Gauss’s law, the displacement
vector �D(r) and the induced polarization �P(r) are weakened.

Using these two parameters, a library of hydration
structures can be generated. We examine the values of
parameters that replicate known physical hydration structures
around ions. Anions like Cl− and F− have well quantified first-
coordination shell ion–oxygen positions of ∼3.1 Å [48] and
∼2.7 Å [49, 50], respectively. The electron density for each ion
is calculated using the well benchmarked quantum chemistry
package GAMESS, with the nucleus included as a sharp
peak at the origin. GAMESS uses density-functional theory
to calculate the electronic structures of quantum mechanical
ions and molecules [51]. Using these calculated charge
distributions, we find good agreement in the first peak position
of negative induced charge density and the known ion–oxygen
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distance when rexc is ∼2.25 Å for Cl− and ∼1.75 Å for
F−. These values for rexc are slightly larger than the bare
ion radii (1.81 Å for Cl−, 1.36 Å for F− [52]). These small
deviations are not surprising due to water packing, structure
and hydrogen-bonding effects.

Another well-studied fundamental charge distribution in
water is the solvated excess electron, which is defined both
by a cavity and by a significant amount of charge penetrating
the surrounding environment, in contrast to atomic ions. The
excess electron in water is a ubiquitous transient species in
photoinduced chemical reactions. It forms a roughly spherical
charge distribution and an ion-like cavity surrounded by water
molecules. Though the hydrated electron has been studied
for decades using simulations [53–55], little experimental
work has been published on the bulk-hydrated electron case.
Experimental access is limited to the excess electron on water
clusters due to the complicated nature of the bulk case. Here
we use GFID to construct a schematic model of the hydrated
electron surrounded by bulk-phase water, and compare this
model to what is known about the hydrated electron.

Computer simulations model the hydrated electron as
a rapidly moving ‘point charge’ that interacts with its
surrounding environment quantum mechanically. Here, we
investigate the extent to which this can be captured using
an average ’smeared’ negative charge distribution of finite
spatial extent coincident with a spherical solvent cavity of well-
defined size. From measurements [56] and simulations [53],
the hydrated electron is known to be centered in a cavity
with the first hydration shell center-oxygen distance being
3.1–3.3 Å and center-hydrogen distance being 2.1 Å. The
analogous glassy structure of tetrahedrally coordinated water
molecules surrounding the hydrated electron is known as the
Kevan model [56]. Further, it is known that the electron ‘leaks’
out of its cavity: about 20% of the electron penetrates the
surrounding solvent [57]. Using these observations, we model
the hydrated electron roughly as a negative Gaussian charge
distribution, ρ(r) ∝ e−r2/2σ 2

, where σ = 1.5 Å. The cavity
is defined to replicate the known charge spillage, by using a
sphere that encloses 80% of the Gaussian charge distribution.
This results in an excluded volume that extends ∼2 Å from the
center of the distribution.

Using these as inputs, we compared the resultant induced
hydration structure from GFID with computer simulations.
The model and static GFID/excluded volume reconstructions
of the long-time hydration structure surrounding the model of
the static electron model agree well with both simulations and
experiment. The induced negative charge density is centered at
3.2 Å, in agreement with simulation and Kevan model results.

5. Discussion

As shown in the examples from section 4, it is possible to
reconstruct the hydration structure surrounding model charge
distributions with excluded volume from meV-IXS data. In
addition to getting physically accurate results, it is important
to address the range of validity of this technique. For example,
what are the physical limitations on the range of systems
that can be studied using this technique? Linear response

theory is believed to hold for most cases of physical solute–
solvent systems. However, it has been recently demonstrated
that linear response can fail for cases involving chemical
reactions and photoexcitation in various solvents [58]. A direct
comparison between linear response in optical spectroscopies
and in GFID is complicated by inherent differences in the
underlying measured quantities. We examine two situations.

For femtosecond dynamical processes, the assumption
of linear response (LR) is that for small perturbations like
changes in solute charge density, the solvent relaxes through
the same modes that govern fluctuations of the interaction at
equilibrium. Recently experiments and computational studies
have become sophisticated enough to test the limits of LR, and
several examples of LR breakdown have been demonstrated,
where symmetric changes in the parameters of an experiment
result in qualitatively different relaxation responses from the
system. An example of this is the solvent dynamics around
a positive ion. In LR, exchanging a negative ion of identical
valence for the positive ion should result in a solvent response
identical in magnitude while opposite in sign. LR breaks down
when this assumption does not hold. Recent demonstrations of
LR breakdown are exemplified by the following two classes
of phenomena. The first is that upon excitation, the solute
changes size, affecting the steric state as well as the energetics
of hydration, rather than just the latter [58], hence driving
a breakdown of LR. Similar systems show an asymmetric
relaxation between the photoexcited cationic and anionic state
of sodium [59]. The second class of phenomena is that the
solute dynamics under study are so rapid that they break the
LR assumption of continuous solute–solvent interaction. For
example, the CN molecule can be thought of as a high-speed
molecular rotor. It has been shown that CN can maintain its
angular velocity for many periods after photoexcitation, rather
than to continuously lose rotational energy to the environment
as it would under LR [60].

These situations highlight the potential strengths of the
GFID technique. Formally, GFID is based on LR. However,
both the spatial and temporal parameters of the external charge
distribution are inputs to the reconstruction. For example, in
the case of an asymmetric solute size, the initial and final
charge distribution, as well as the initial and final size and
shape of the excluded molecular volume are all defined in the
LR-based formalism, which mitigate against LR breakdown
from changes in steric interactions due to changes in molecular
shape. In future work, we will do a direct comparison between
GFID and results from optical spectroscopy on these systems.

From the discussion in this paper, it is clear that GFID
is limited by a number of factors. The GFID method can
be used to reconstruct spatio-temporal water dynamics around
dynamic charge distributions, particularly those governed by
Gaussian statistics, valid at lengthscales smaller than those that
nucleate a change in phase in the surrounding solvent [61–63].
In addition to the limitations implicit in the assumptions of
the fluctuation-dissipation theorem, GFID is limited by the
resolution considerations previously discussed.
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6. Conclusion

In this paper, we have described a method to reconstruct
hydration structure from inelastic x-ray scattering data. The
protocol for inverting inelastic x-ray scattering spectra from
meV-resolution experiments via Kramers–Kronig relations to
recover the bulk density linear response function of liquid
water is described in detail. We also suggest an implementation
of GFID that takes into account excluded volume, and
compare the results of this implementation to the known
hydration structure of two different solute–solvent systems.
Good agreement with accepted hydration structure results
can be obtained using GFID. Future work includes applying
the excluded volume implementation to the reconstruction
of evolving hydration structures around dynamical charge
distributions.
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